
Special Topics in Software Estimation

Software Cost Estimating for Iterative/ Incremental
Development Programs
Agile Cost Estimating

NASA CAS July 2014

Outline

• Iterative and Incremental Development
(IID) Programs

• Agile Software Development Processes

• Issues for Program Managers

• Software Estimating Process

• Summary

2

Software Development

• While there are many approaches to Software
Development, they can generally be placed into
2 categories:

• Plan Driven – following a version of the Waterfall
Development Process

• Iterative Driven – following a version of the Agile
Development Process

• Plan Drive programs have an assumption of
some reliable/realistic size metric, for example:

• Source Lines of Code (SLOC)

• Function Points

• Use Cases, etc.

3

Software Development

• Iterative Drive programs, by nature, start with a less
well-defined metric

• Therefore, they may require alternative estimating
approaches

• This briefing will focus on the challenges of
estimating an iterative program using Agile software
development

• In practical experience the terms iterative,
incremental and agile may be used interchangably

While Incremental/Agile programs say they do not have
development metrics, I have almost always found them
in the development room 4

IID Programs’ Key Terms

• IID is an approach to building software in which the
overall lifecycle is composed of iterations or sprints in
sequence

• Each Iteration is a self-contained mini project

• It grew out of the increased application of Agile Development
techniques

• In many defense programs, increments are 6 -12
months in length and each increment is composed of
multiple iterations/sprints of 1-6 weeks

• Time-boxing is the practice of fixing the iteration or
increment dates and not allowing it to change

• This approach is gaining favor in large federal
programs

5

1

Each Iteration/Sprint is a Mini Project

• Each iteration/sprint includes production-
quality programming, not just, for
example, requirements analysis
• The software resulting from each iteration/sprint is not a

prototype or proof of concept, but a subset of the final system

• More broadly, viewing an iteration as a self-contained
mini project, activities in many disciplines
(requirements analysis, testing, etc.) occur within a
single iteration

6

1

2

IID

• Although IID is in the ascendency today, it is not a
new idea

• 1950s “stage-wise Model” – US Air Defense SAGE Project

• IBM created the IID method of Integration Engineering in the
1970s

• IID Programs tend to be less structured in the
beginning, and therefore reliable estimates of cost
and schedule may not be available until 10-20% of
the project is complete

(in a recent program I saw a cost variance during the
first 4 increments of 45% per size metric)

• The current emphasis on agile software development
processes maps directly into the IID Concept

7

4

Typical IID Problems –
SLOC Count

8

Code Counting Organization and SLOC Counts

UCC Categories Contractor Categories

Support
Contractor

2011

Support
Contractor

2012

Development
Contractor

2011
Government

2011
Government

2012

Common

2,395

2,451

-

-

-

Connectors. Connectors

52,511

34,012

70,385

55,438

27,627

Feature Packages Feature Packages

5,887

8,173

49,277

7,468

18,836

Core Infrastructure Core Infrastructure

36,133

19,276

162,011

461

211,228

Information Services Information Services

23,245

-

11,432

25,256

-

Presentation Presentation Infrastructure

14,523

-

-

51,813

-

Tools

35,743

-

-

1,813,456

1,813,948

 Task Services

-

-

-

-

-

In-House Dev In-House Dev

-

-

1,852,357

-

Total

170,437

63,912

293,105

3,806,249

2,071,639

Through analysis, we were able to somewhat reconcile these large

differences

Typical IID Problems (continued)–
Gathering Historic Data

9

Estimated S/W Development Costs through the Completion of “X” Increments

Contractor 1 Contractor 2 In-House

Increment
Development

Agile
Development

Increment
Development

Agile
Development

Increment
Development

Agile
Development Totals

Inc a. $ 411,600 $ - $ 411,600 $ - $ 100,000 $ - $ 923,200

Inc b $ 1,032,402 $ - $ 1,108,939 $ - $ 100,000 $ - $ 2,241,341

Inc c $ 1,711,706 $ 538,398 $ 1,664,882 $ 296,508 $ 549,322 $ 218,400 $ 4,979,216

Inc c Ext 1 $ - $ 812,672 $ - $ - $ - $ - $ 812,672

Inc c, Ext 2 $ - $ 186,242 $ - $ - $ - $ - $ 186,242

Totals $ 3,155,708 $ 1,537,312 $ 3,185,421 $ 296,508 $ 749,322 $ 218,400 $ 9,142,671

Software Maintenance as a % of Develoment Costs

Factor Annual Maint. $/FTE FTEs *

Low 5% $ 457,134 $ 213,600 3

Most Likely 10% $ 914,267 $ 179,412 6

High 13% $ 1,188,547 $ 155,141 8

One could

suggest that

these problems

are common to

all Software

Intensive

Programs

What is Agile Software
Development?

• In the late 1990s, several methodologies
received increasing public attention

• Each had a different combination of old,
new, and transmuted old ideas, but they
all emphasized:
• Close collaboration between the programmer and business

experts

• Face-to-face communication (as more efficient than written
documentation)

• Frequent delivery of new deployable business value

• Tight, self-organizing teams

• And ways to craft the code and the team such that the
inevitable requirements churn was not a crisis

10

5

Manifesto for Agile Software
Development

11

• “We are uncovering better ways of
developing software by doing it and
helping others do it

• Through this work, we have come to
value:
• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

• That is, while there is value in the items on the right, we
value the items on the left more”

6

Principles behind the Manifesto

• Principles of Agile Developers:

• Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software

• Welcome changing requirements, even late in development

• Agile processes harness change for the customer’s competitive advantage

• Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale

• Business people and developers must work together daily
throughout the project

• Build projects around motivated individuals

• Give them the environment and support they need, and trust them to get
the job done

• Working software is the primary measure of progress

12

7

Principles behind the Manifesto

• Principles of Agile Developers (continued):

• The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation

• Agile processes promote sustainable development

• The sponsors, developers, and users should be able to maintain a constant
pace indefinitely

• Continuous attention to technical excellence and good design
enhances agility

• Simplicity, the art of maximizing the amount of work not
done, is essential

• The best architectures, requirements, and designs emerge
from self-organizing teams

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly

13

8

Common Myths about Agile

14

Myth Reality

Silver bullet / magic Actually very hard work!

Has no planning /
documentation / architecture

Just the minimum possible

Is undisciplined or a license to
hack

Disciplined, business driven
work

 Is new and unproven / just a
fad / not being used by industry
leaders

Not anymore. Many large and
small organizations using it

Only good for small projects

Also used successfully on
medium and large projects

Differences of Agile and Non-Agile

• Recent observations regarding the utilization of
Agile development approaches within the Federal
Government:
• May work best when the project is more requirements-driven than schedule-

driven

• Beginning to see common usage in Department of Defense (DoD) unclassified
(e.g. Marine Corps) and classified programs (e.g. Naval Reconnaissance Office
[NRO]) 15

Agile Non-agile

Prioritize by value Prioritize by dependency

Self-organizing teams Managed resources the
minimum possible

Team focus Project focus

Evolving requirements Frozen requirements

Change is natural Change is risky

Differences of Agile and Non-Agile

• Recent observations regarding the utilization of
Agile development approaches within the Federal
Government (continued):

• Being talked about within emerging National Aeronautics
and Space Administration (NASA) projects

• Being used in DHS

• It sounds very much like what we called “rapid
prototyping”

• More common than is being recognized

16

Welcome to Agile

• What is an agile development approach?

• Depends on the flavor:

• Agile Modeling

• Lean Development (LD)

• Adaptive Software Development (ASD)

• Exia Process (ExP)

• Scrum

• eXtreme Programming (XP)

• Crystal methods

• Evolutionary – EVO

• Feature Driven Development (FDD)

• Dynamic Systems Development Method (DSDM)

• Various Unified Processes (UP): agile, essential, open

• Velocity tracking, and more!

17

What do they have in common?

• Agile projects are focused on key business values

• What does the client really, really, really want?

• Deliver what the client wants at the end of the
project, not what the client wanted at the beginning
of the project

• They all contain a project initiation stage (aka planning)

• Project scope, constraints, objectives, risks are all
officially documented

• Short (very short) development of chunks of
features/stores/requirements/needs/desires (aka sprints)

• Constant feedback

• The one place where we can actually find short
meetings

• Customer participation is MANDATORY or no-go!

• Refactoring; as in, do it again and this time get it right, or
better

18

The Agile Paradigm Shift

19

9

What do the Models Say?

20

10

What is driving these “apparent” reductions?

Other Current Research

Empirical evidence indicates development costs may be reduced by
10 to 20 percent for Iterative Driven Programs. In a “The Raytheon
Agile Journey” a presentation by Cindy Molin (Director, SW
Engineering) and Katherine (K) Sementilli (Deputy, SW
Engineering), Raytheon Missile Systems on June 22, 2012 the
following efficiencies based on agile development are observed
(based on over 250 projects and over 5 million ELOCs):

 Agile Development Results

• 20% of Raytheon SW Engineering Development
Productivity

• 25% productivity increase Agile vs Non-Agile

• 10% variability reduction Agile vs Non-Agile

• 50% faster for Agile vs Non-Agile

• Time on task for an average work day 30% more for Agile
vs Non-Agile

21

Scrums and Sprints

• Scrum Size:

• 1-10 people (have seen up to
20)

• Sprint Length:

• 1-6 weeks (have seen up to
13 weeks) (13 conveniently
give 4 sprints per year)

• Story Points* per Sprint:

• 6-9 Story Points per Sprint

• There seems to be a real
avoidance of using
Function Points or SLOC
in many of these efforts.

• (But trust me a size
metric exists somewhere
within the development
community)

22

* I have Use Case, Feature Point, and other

metrics for specific agile development programs,

but I am not sure they are transferable

http://upload.wikimedia.org/wikipedia/commons/0/0b/Rugby_union_scrummage.jpg

Four Estimating Processes

• Process 1: Simple Build-up approach based on
averages can be defined as:

• Sprint Team Size (SS) x Sprint length (Sp time) x Number of
Sprints (# Sprints)

• Process 2: Structured approach based on
established “velocity” – most often used internally by
the developer since detailed/sensitive data are
available to them

• Process 3: Automated Models approach based on
a size metric – which may be difficult to quantify

• Process 4: Factor/Complexity approach based on
data generated in early iterations

23

A Word About 2014 Rates

• Developers and Tester - $70 to $200 per hour,
median team rate about $125

• Agile Coach - $100 to $200 per hour, average about
$150

• Business Analyst - $125

• Average Team Rate of about $115

WARNING: THESE ARE BROAD AVERAGE I HAVE FOUND
THIS YEAR

Unit IV - Module 12

24

Process 1: Build-Up Approach

When a program is comprised completely of
agile sprints, we can use industry norms or
program plans to develop an estimate

• Process 1 is defined as:

• SS x Sp time x # Sprints

• SS (normally 1-10 people) x Sp time (normally 0.25 to
1.25 months) x # Sprints

• Frequently used by independent estimators since actual
data are often unavailable

• Remember to factor in time for demonstrations/user
feedback

• Can develop a point estimate and a range

• Works well for small programs

The weakness of this approach is justifying the team size, number of
sprints, sprint length and total required to meet the requirement 25

Process 2: Structured
Approach based on “Velocity”

• Process 2 can be summarized by:

1. Express requirements in the same size metric used by the
developer; normally Features, Feature Points, Use Case Points,
Story Points, … What the size metric is unimportant as long as it
is consistently used across this program*

2. (optional). Use a process to rank the size metric: small, medium,
large using something like Fibonacci sequence, planning poker

3. Estimate and/or document the velocity (number of size metrics
per time period) at which the Agile team has worked

4. Estimate and/or document the historic cost per size metric for the
Agile team

5. Spread the sprints over time to develop time-phased estimate

* I would hope that over time we could develop standards for agile
development across the various size metrics and programs. However,
since these metric often do not conform to a “standard” this is an
elusive task. But an average over several early interactions may be
very accurate for a specific [program.

26

What is a Use Case Point?

• A weighted count of actors
and use cases

• Actor weight is classified as:

• 1 – Simple: highly-defined and
elemental, such as a simple API
call

• 2 – Average: protocol-driven
interaction, allowing some freedom

• 3 – Complex: potentially complex
interaction

• Use Case weight is classified
as:

• 5 – simple: 3 or fewer
transactions

• 10 – average: 4-7 transactions

• 15 – Complex: more than 7
transactions

27

Moving to Automated Models

• Step 5 of the previous slide suggested you time-
phase the Sprints

• When you do this, the results often resemble the Rayleigh
Function used in modern software models

28

• This observation leads to the third estimating process

http://en.wikipedia.org/wiki/Image:Rayleigh_distributionPDF.png

Process 3: Automated Model Approach

• The “Parameter” settings within automated models
can be adjusted to estimate costs and schedule for
complex/large projects

• The “environmental factors” in SEER, PRICE, SLM, and
COCOMO II have been adjusted to reflect Agile practices
and therefore Iterative Development

• Remember, the size metric is still the key cost driver,
which is even less certain in agile programs than
traditional ones

29

Process 4: Factor/Complexity Approach

• In a normal IID program, the initial
program estimate must be based on
broad parameters with wide ranges –
analogy to previous programs and/or
generic models

• Specific iterations/sprints can be
estimated using the agile estimating
processes previously presented

• The real question is: how do we estimate
the cost of future Increments (time
boxes)?

• The following slides present Process 4 Factor/Complexity
Approach

30

Process 4: Factor/Complexity Approach

• Step 1: Select a Baseline Increment (often the
last successful increment) for the program

• Step 2: Carefully analyze this baseline increment
– this analysis could be based on SLOC, function
points, features, requirements, dollars, or some
other metric

• Step 3: For each new increment, compare the
expected functionality and complexity of the new
increment to the baseline (or last successful)
increment

• Notional functional and complexity factors are presented on the next slide

31

Process 4: Factor/Complexity Approach

32

Scale Functional Description Effort Multipliers

- - - Significantly less functionality to be delivered 0.5

- - Moderately less functionality to be delivered 0.7

- Slightly less functionality to be delivered 0.9

= Functionality equivalent to Increment X 1.0

+ Slightly more functionality to be delivered 1.3

+ + Moderately more functionality to be delivered 1.7

+ + + Significantly more functionality to be delivered 2.0

Scale Complexity Description Effort Multipliers

- - Significantly less complex 0.7

- Slightly less complex 0.9

= Complexity equivalent to Increment X 1.0

+ Slightly more complex 1.3

+ + Significantly more complex 1.7

• These initial set of factors came from the environmental factor
from traditional software cost models

• Step 4: Because each Increment is a mini project, use a Rayleigh
or simple Beta Curve (such as a 60/50 Beta curve) to phase costs

• However, do not be surprised if you encounter programs that are
truly operated and manages as Level of Effort (LOE)

Process 4: Factor/Complexity Approach

• Step 5: The project can define the length of each
increment – likely between 4 and 14 months

33

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

Incremental Beta

Incremental Beta

Issues for Project Management

• Cost and Schedule modelers usually want well-
defined program requirements and size metrics
early in the lifecycle – the nature of IID
programs argues against this
• IID programs tend to be less structured in the beginning, and therefore reliable

estimates of cost and schedule may not be available until 10-20% of the project
is complete

• Initial contracts tend to be Fixed Price or LOE
• This does not imply poor value to the project

• It does imply that key “value-added” metrics may not be identified or collected

• “Time Boxing” tends to resolve the individual
scheduling issues, but not the total program
length issue
• A specific cost estimating strategy is required to accurately plan for resources

34

11

Issues for Project Management

• If a program has too many planned Increments (10 or
more), it may not be a well-defined program and could
spin out of control or just become an LOE research project

• Establishing and monitoring metrics becomes critical

• “To be able to adopt an empirical approach to project
management and control, we must be able to objectively
demonstrate and measure how much progress the project
has made in each iteration

• Possible ways to measure progress include:

• Number of products and documents produced

• Number of lines of code produced

• Number of activities completed

• Amount of budget/schedule consumed

• Number of requirements verified to have been verified
implemented correctly”

35
12

Schedule Analysis

• Due to the short length of increments (generally
9-12 months) and continuity between
increments, phasing the costs within a specific
increment is less important

• However, the “million dollar questions” for
incremental and agile programs (where
requirements definition and documentation are
less detailed, and the development is more
flexible/emergent) are:
• What will the program look like at Initial Operational Capability (IOC)?

• How many increments will it take?

• How long is each increment going to last?

• Cost estimators are going to have to adjust, and
examine these programs as a schedule analyst
might to produce credible lifecycle estimates

36

Summary

• Fixed Price and/or LOE contracts in the early phases should
be written so that key “value-added” metrics are collected
and reported during each increment

• Estimators may have to employ a variety of software
estimating methodologies within a single estimate to model
the blended development approaches being utilized in
today’s development environments
• An agile estimating process can be applied to each iteration/sprint

• Future Increments can be estimated based on most recent/successful IID performance

• Cost estimators will have to scrutinize these programs like
a schedule analyst might to determine the most likely IOC
capabilities and associated date

• The number of increments are an important cost driver as well as an influential
factor in uncertainty/risk modeling

37

Summary

• All of the estimation methods are susceptible to error,
and require accurate historical data to be useful
within the context of the organization

• When developers and estimators use the same
“proxy” for effort, there is more confidence in the
estimate

38

Recommended Reading

• “The Death of Agile” blog

• “Agile Hippies and The Death of the Iteration” blog

39

5

Endnotes

• 1, 2, 4, 10, 11: Larman, C. (2010). Agile and
Iterative Development: A Manager's Guide.

• 3: Kilgore, J. (2012). Senior Associate, Kalman &
Company, Inc.

• 5, 6, 7, 8: Agile Alliance. (2012). Agile Alliance.
Retrieved 2012, from
http://www.agilealliance.org

• 9: Coaching, T. L. (n.d.). Rally Software Scaling
Software Agility.

• 12: Bittner, K., & Spence, I. (2006). Managing
Iterative Software Development Projects.
Addison-Wesley Professional.

40

http://www.agilealliance.org/

Additional References

• Cohn, M. (2009). Succeeding with Agile Software
Development using Scrum.

• Dooley, J. (2011). Software Development and
Professional Practice.

• Gack, G. (2010). Managing the Black Hole.

• George, J., & Rodger, J. (2010). Smart Data
(Enterprise Performance Optimization Strategy).

• Royce, W., Bittner, K., & Perrow, M. (2009). The
Economics of Iterative Software Development:
Steering Towards Better Business Results.
Addision Wesley Professional.

• Smith, G., & Sidky, A. (2009). Becoming Agile in
an Imperfect World.

41

5

Contact Information

• Bob Hunt

• Email: BHunt@Galorath.com

• Phone: 703.201.0651

42

mailto:BHunt@Galorath.com

